Katayun Barmak

Philips Electronics Professor, Chair of the Materials Sciences and Engineering Program Committee

Materials Science & Engineering
Office: 1137 S.W. Mudd
Mail: 200 S.W. Mudd, Mail Code: 4701
New York, NY 10027
Email: katayun.barmak@columbia.edu

Research Interests

Processing and structure (crystal structure and microstructure) relationships to electrical and magnetic properties of metal films; developing transmission electron microscopy automated orientation imaging techniques that can be applied to the study of nanostructured materials; use of differential scanning calorimetry for the study solid state reactions and phase transformations in thin films.


Ph.D. Massachusetts Institute of Technology, 1989


Dr. Katayun Barmak obtained her B.A. (First Class Hons.) and M.A. degrees in Natural Sciences, Metallurgy and Materials Science from the University of Cambridge, England in 1983 and 1987, respectively. She completed her M.S. in Metallurgy and Ph.D. in Materials Science at the Massachusetts Institute of Technology in 1985 and 1989, respectively. During her doctoral work she was a recipient of an AT&T Foundation Fellowship. Prior to her appointment to the Faculty at Lehigh in 1992, Dr. Barmak spent three years at IBM T.J. Watson Research Center and IBM East Fishkill development laboratory working on materials, structures and processes for advanced generations of field effect and bipolar junction transistors. She joined the Department of Materials Science and Engineering at Carnegie Mellon University in 1999 and was promoted to the rank of Full Professor in 2002. Dr. Barmak received the National Young Investigator in 1994 and a Deutscheforschunggemeinschaft Fellowship the same year. She was one of four Technical Chairs of the Materials Research Society Meeting in Spring 1999. She was a Visiting Scientist at the IBM T. J. Watson Research Center 1998-2004. She is an Associate Editor of the Journal of Electronic Materials.

VIDEO: Transmission Microscopy Lab

Recent Publications

N. Bordeaux, A. M. Montes-Arango, J. Liu, K. Barmak, L. H. Lewis “Thermodynamic and kinetic parameters of the chemical order-disorder transformation in L10 FeNi (tetrataenite)”, Acta Mater.103, 608-615 (2016). DOI: http://dx.doi.org/10.1016/j.actamat.2015.10.042

J. Liu, K. Barmak, “Topologically close-packed phases: Deposition and formation mechanism of metastable β-W in thin films”, Acta Mater. 103, 223-227 (2016). DOI: http://dx.doi.org/10.1016/j.actamat.2015.11.049

A. M. Montes-Arango, N. Bordeaux, J. Liu, K. Barmak, L. H. Lewis, “L10 phase formation in ternary FePdNi alloys”, J. Alloys and Compounds 648, 845-852 (2015). DOI: 10.1016/j.jallcom.2015.07.019

Eric Poirier, Frederick E. Pinkerton, Robert Kubic, Raja K. Mishra, Nina Bordeaux, Arif Mubarok, Laura H. Lewis, Joseph I. Goldstein, Ralph Skomski and Katayun Barmak, “Intrinsic magnetic properties of L10 FeNi obtained from meteorite NWA 6259”, J. Appl. Phys. 117, 17E318 (2015). DOI: http://dx.doi.org/10.1063/1.4916190

J. Liu, K. Barmak, “Method for measurement of diffusivity: Calorimetric studies of Fe/Ni multilayer thin films” Scripta Mater. 104, 1-4 (2015). DOI: http://dx.doi.org/10.1016/j.scriptamat.2015.02.031

X. Liu, N. T. Nuhfer, A. P. Warren, M. F. Toney, K. R. Coffey, G. S. Rohrer and K. Barmak, “Grain size dependence of the twin length fraction in nanocrystalline Cu thin films via transmission electron microscopy based orientation mapping”, J. Mater. Res. 30, 528-537 (2015). DOI: 10.1557/jmr.2014.393

J. Liu, K. Barmak “Interdiffusion in nanometric Fe/Ni multilayer films”, J. Vac. Sci. Technol. A 33, 021510:1-4 (2015). DOI:

L. H. Lewis, F. E. Pinkerton, N. Bordeaux, A. Mubarok, E. Poirier, J. Goldstein, R. Skomski, and K. Barmak, , “De Magnete et Meteorite: Cosmically motivated materials”, IEEE Magn. Lett. 5, 5500104 (2014). DOI: 10.1109/LMAG.2014.2312178

K. Barmak, A. Darbal, K. J. Ganesh and P. J. Ferreira, T. Sun, B. Yao, A. P. Warren, K. R. Coffey, J. M. Rickman, “Surface and grain boundary scattering in nanometric Cu thin films: A quantitative analysis including twin boundaries”, J. Vac. Sci. Technol. A32, 061503:1-8 (2014). DOI: 10.1116/1.4894453

X. Liu, A. P. Warren, N. T. Nuhfer, A. D. Rollett, K. R. Coffey and K. Barmak, “Comparison of crystal orientation mapping-based and image-based measurement of grain size and grain size distribution in a thin aluminum film”, Acta Mater. 79, 138-145 (2014). DOI: http://dx.doi.org/10.1016/j.actamat.2014.07.014

D. Choi, X. Liu, P. K. Schelling, K. R. Coffey and K. Barmak, “Failure of semiclassical models to describe resistivity of nanometric, polycrystalline tungsten films”, J. Appl. Phys. 115, 104308:1-7 (2014). DOI: 10.1063/1.4868093

X. Liu, N. T. Nuhfer, J. S. Carpenter, A. Darbal, J. E. Ledonne, S. B. Lee, A. D. Rollett, K. Barmak, “Interfacial orientation and misorientation relationships in nanolamellar Cu/Nb composites using transmission electron microscope based orientation and phase mapping”, Acta Mater. 64, 333-344 (2014). DOI: http://dx.doi.org/10.1016/j.actamat.2013.10.046

R. Backofen, K. Barmak, K. R. Elder, A. Voigt, “Grain growth beyond Mullins, capturing the complex physics behind the universal grain size distributions in thin metallic films”, Acta Mater. 64, 72-77 (2014). DOI: http://dx.doi.org/10.1016/j.actamat.2013.11.034

K. Barmak, B. Wang, A. T. Jesanis, D. C. Berry, J. M. Rickman, “Quantitative kinetic models of the A1 to L10 transformation in FePt and related ternary alloy films”, IEEE Trans. Magn. 50, 2001104:1-4 (2014). DOI: 10.1109/TMAG.2013.2279132

L. H. Lewis, A. Mubarok, E. Poirier, N. Bordeaux, P. Manchanda, A. Kashyap, R. Skomski, J. Goldstein, F. E. Pinkerton, R. K. Mishra, R. C. Kubic Jr, and K. Barmak, , “Inspired by nature: investigating tetrataenite for permanent magnet applications”, J. Phys.: Condens. Matter 26, 064213 (2014). DOI: 10.1088/0953-8984/26/6/064213

Barmak, K. (with Kevin Coffey, eds.,) "Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties," Woodhead Publishing Series in Electronic and Optical Materials, No. 40, 2014.

J. M. Rickman, K. Barmak, “Simulation of metallic conduction in polycrystalline metallic films”, J. Appl. Phys. 114, 133703:1-6 (2013).
DOI: http://dx.doi.org/10.1063/1.4823985
D. Choi, M. Moneck, X. Liu, S.-J. Oh, C. R. Kagan, K. R. Coffey and K. Barmak, “Crystallographic anisotropy of the resistivity size effect in single crystal tungsten nanowires”, Nature Scientific Reports 3, 2591:1-4 (2013). DOI: 10.1038/srep02591
S. Donegan, J. C. Tucker, A. D. Rollett, and K. Barmak, “Extreme value analysis of tail departure from log-normality in experimental and simulated grain size distributions”, Acta Mater. 61, 5595–5604 (2013). DOI: http://dx.doi.org/10.1016/j.actamat.2013.06.001
X. Liu, D. Choi, H. Beladi, N. T. Nuhfer, G. S. Rohrer, K. Barmak, “The five parameter grain boundary character distribution of nanocrystalline tungsten”, Scripta Mater. 69, 413-416 (2013). DOI: http://dx.doi.org/10.1016/j.scriptamat.2013.05.046
(Review Article) K. Barmak, E. Eggeling, D. Kinderlehrer, R. Sharp, S. Ta’asan, A. D. Rollett, K. R. Coffey “Grain Growth and the Puzzle of its Stagnation in Thin Films: The Curious Tale of a Tail and an Ear”, Progress in Materials Science 58, 987-1055 (2013). DOI: http://dx.doi.org/10.1016/j.pmatsci.2013.03.004
(Invited) K. Barmak, B. Wang, A. T. Jesanis, D. C. Berry and J. M. Rickman, “L10 FePt: Ordering, anisotropy constant and their relation to film composition”, IEEE Trans. Mag. 49, 3284-3291 (2013). DOI:10.1109/TMAG.2013.2242445
A. D. Darbal, K. J. Ganesh, X. Liu, S.-B. Lee, J. Ledonne, T. Sun,  B. Yao, A. P. Warren, G. S. Rohrer, A. D. Rollett, P. J. Ferreira, K. R. Coffey, and  K. Barmak ,“Grain boundary character distribution of nanocrystalline Cu thin films using stereological analysis of transmission electron microscope orientation maps”, Micros. Microanal. 19, 111-119 (2013). DOI:10.1017/S1431927612014055
D. Choi, C.-S. Kim, S. Chung, A. P. Warren, N. T. Nuhfer, M. F. Toney, K. R. Coffey K. Barmak, “The electron mean free path of tungsten and the resistivity of epitaxial (110) tungsten films”,  Phys. Rev. B 86, 04532:1-5 (2012). DOI: 10.1103/PhysRevB.86.045432
J. M. Rickman, K. Barmak, “Resistivity in rough metallic thin films: A Monte Carlo study”, J. Appl. Phys. 112, 013704 (2012). DOI: 10.1063/1.4732082

B. Wang, K. Barmak, “The impact of deposition temperature on L10 formation in FePt films”, J. Appl. Phys. 111, 07B718:1-3 (2012).
DOI: 10.1063/1.3679388
A. P. Warren, T. Sun, B. Yao, K. Barmak, M. F. Toney, and K. R. Coffey, “Evolution of nanoscale roughness in Cu/SiO2 and Cu/Ta interfaces”, Appl. Phys. Lett. 100, 024106 (2012). DOI: 10.1063/1.3675611
D. Choi, K. Barmak, A. Darbal, X. Liu, A. Warren, K. R. Coffey, “Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films”, J. Vac. Sci. Technol. A 29, 051512:1-8 (2011).

B. Wang, D. C. Berry, Y. Chiari, and K. Barmak, "Experimental measurements of heats of formation of Fe3Pt, FePt and FePt3 using differential scanning calorimetry", J. Appl. Phys. 109, 013903:1-8 (2011).

B. Wang, K. Barmak, "Re-evaluation of the impact of ternary additions of Ni and Cu on the A1 to L10 transformation in FePt films", J. Appl. Phys. 109, 123916:1-7 (2011).

(Editor Selection) K. Barmak, E. Eggeling, M. Emelianenko, Y. Ephshteyn, D. Kinderlehrer, R. Sharp, S. Ta'asan, "Critical events, entropy and the grain boundary character distribution", Phys. Rev. B 83, 134117:1-12 (2011).

K. Barmak, E. Eggeling, M. Emelianenko, Y. Ephshteyn, D. Kinderlehrer, R. Sharp, S. Ta'asan, "An entropy based theory of the grain boundary character distribution", Discrete and Continuous Dynamical Systems A 30, 427 (2011).

B. Wang, K. Barmak, and T. J. Klemmer, "The A1 to L10 transformation in FePt films with ternary alloying additions of Mg, V, Mn and B", J. Appl. Phys. 109, 07B739-1:3 (2011).

K. Barmak, "A commentary on: Reaction kinetics in the processes of nucleation and growth," by W. A. Johnson, R. F. Mehl, Trans. AIME 35, 416-58 (1939), reprinted with the original unpublished appendices now included, Met. Trans. A 41, 2711-2712 (2010).

B. Wang, K. Barmak, T. J. Klemmer, "The A1 to L10 transformation in FePt films with ternary alloying additions of Ag and Au", IEEE Trans. Magn. 46, 1773-1776 (2010).

T. Sun, Bo Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey, "Surface and grain-boundary scattering in nanometric Cu films", Phys. Rev. B 81, 155454:1-12 (2010).

D. C. Berry, K. Barmak, "Time-temperature-transformation diagrams for the A1 to L10 phase transformation in FePt and FeCuPt thin films", J. Appl. Phys. 101, 014905-1:14 (2007).

(Critical Review) K. Barmak, C. Cabral, Jr., J. M. E. Harper, K. P. Rodbell, "On the use of alloying elements for Cu interconnect applications", J. Vac. Sci. Technol. B 24, 2485-2498 (2006).

(Invited) K. Barmak, J. Kim, C.-S. Kim, W. E. Archibald, G. R. Rohrer, A. D. Rollett, D. Kinderlehrer, S. Ta'asan, H. Zhang, D. J. Srolovitz, "Grain boundary energy and grain growth in Al films: Comparison of experiments and simulations", Scripta Mater. 54, 1059-1063 (2006).

Post-Doctoral Position in Thin Film Deposition and Structural Characterization by X-ray Diffraction and Electron Microscopy

The Department of Applied Physics and Applied Mathematics at The Fu Foundation School of Engineering and Applied Science of Columbia University in the City of New York invites applications for a Postdoctoral Research Scientist position in the area of thin film deposition and characterization by x-ray diffraction and electron microscopy. The films will be deposited by sputtering in an ultrahigh vacuum deposition chamber. The deposited films will be characterized by X-ray diffraction, scanning electron microscopy conventional and high-resolution transmission and scanning transmission electron microscopy as well as tomographic imaging, analytical electron microscopy and crystal orientation mapping. This is a full-time position and the work will be carried out in the thin film deposition lab, the shared materials characterization and electron microscopy facilities at Columbia University and at the ASRC of the City University of New York. The use of facilities at Brookhaven National Laboratories is also anticipated. Candidates for postdoctoral research positions come to the University to continue their training, generally within three years of completion of Ph.D., for independent careers as scientists and scholars and must display strong research potential in their field of study. All candidates are expected to be able to work well in a team and to communicate effectively the results of their research or research activities both orally and in writing.

Minimum Qualifications: A PhD (or equivalent professional degree) in Materials Science and Engineering or a related field is required.The candidate should have actual experience in operation and maintenance of sputtering systems, in x-ray diffraction studies of polycrystalline and epitaxial films, in scanning electron microscopy, and in conventional and high-resolution transmission, scanning transmission and analytical electron microscopy and crystal orientation mapping studies for physical sciences. Experience with tomographic imaging and image reconstruction is also highly desirable. The microscopy studies will be conducted on metallic films and lines. The candidate is required to prepare the necessary electron transparent samples for study using a variety of techniques such as conventional grinding, polishing and ion milling, chemical back etching, grid transfer techniques for 2D materials, as well as focused ion beam preparation. The candidate must be able to run experiments and analyze data independently.

Please send your CV, a cover letter and a list of three references with their contact information to Prof. Barmak at kb2612@columbia.edu. The position is open immediately and will remain open until filled. Columbia University is an Equal Opportunity/Affirmative Action Employer.


500 W. 120th St., Mudd 200, MC 4701 New York, NY 10027 / Phone: 212-854-4457 / Fax: 212-854-8257 / Email: apam@columbia.edu

©2012 Columbia University